/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* Do an R{E,O}DFT11 problem via an R2HC problem, with some pre/post-processing ala FFTPACK. Use a trick from: S. C. Chan and K. L. Ho, "Direct methods for computing discrete sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). to re-express as an REDFT01 (DCT-III) problem. NOTE: We no longer use this algorithm, because it turns out to suffer a catastrophic loss of accuracy for certain inputs, apparently because its post-processing multiplies the output by a cosine. Near the zero of the cosine, the REDFT01 must produce a near-singular output. */ #include "reodft.h" typedef struct { solver super; } S; typedef struct { plan_rdft super; plan *cld; twid *td, *td2; INT is, os; INT n; INT vl; INT ivs, ovs; rdft_kind kind; } P; static void apply_re11(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT is = ego->is, os = ego->os; INT i, n = ego->n; INT iv, vl = ego->vl; INT ivs = ego->ivs, ovs = ego->ovs; R *W; R *buf; E cur; buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { /* I wish that this didn't require an extra pass. */ /* FIXME: use recursive/cascade summation for better stability? */ buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; for (i = n - 1; i > 0; --i) { E curnew; buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; cur = curnew; } W = ego->td->W; for (i = 1; i < n - i; ++i) { E a, b, apb, amb, wa, wb; a = buf[i]; b = buf[n - i]; apb = a + b; amb = a - b; wa = W[2*i]; wb = W[2*i + 1]; buf[i] = wa * amb + wb * apb; buf[n - i] = wa * apb - wb * amb; } if (i == n - i) { buf[i] = K(2.0) * buf[i] * W[2*i]; } { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, buf, buf); } W = ego->td2->W; O[0] = W[0] * buf[0]; for (i = 1; i < n - i; ++i) { E a, b; INT k; a = buf[i]; b = buf[n - i]; k = i + i; O[os * (k - 1)] = W[k - 1] * (a - b); O[os * k] = W[k] * (a + b); } if (i == n - i) { O[os * (n - 1)] = W[n - 1] * buf[i]; } } X(ifree)(buf); } /* like for rodft01, rodft11 is obtained from redft11 by reversing the input and flipping the sign of every other output. */ static void apply_ro11(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT is = ego->is, os = ego->os; INT i, n = ego->n; INT iv, vl = ego->vl; INT ivs = ego->ivs, ovs = ego->ovs; R *W; R *buf; E cur; buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { /* I wish that this didn't require an extra pass. */ /* FIXME: use recursive/cascade summation for better stability? */ buf[n - 1] = cur = K(2.0) * I[0]; for (i = n - 1; i > 0; --i) { E curnew; buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; cur = curnew; } W = ego->td->W; for (i = 1; i < n - i; ++i) { E a, b, apb, amb, wa, wb; a = buf[i]; b = buf[n - i]; apb = a + b; amb = a - b; wa = W[2*i]; wb = W[2*i + 1]; buf[i] = wa * amb + wb * apb; buf[n - i] = wa * apb - wb * amb; } if (i == n - i) { buf[i] = K(2.0) * buf[i] * W[2*i]; } { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, buf, buf); } W = ego->td2->W; O[0] = W[0] * buf[0]; for (i = 1; i < n - i; ++i) { E a, b; INT k; a = buf[i]; b = buf[n - i]; k = i + i; O[os * (k - 1)] = W[k - 1] * (b - a); O[os * k] = W[k] * (a + b); } if (i == n - i) { O[os * (n - 1)] = -W[n - 1] * buf[i]; } } X(ifree)(buf); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; static const tw_instr reodft010e_tw[] = { { TW_COS, 0, 1 }, { TW_SIN, 0, 1 }, { TW_NEXT, 1, 0 } }; static const tw_instr reodft11e_tw[] = { { TW_COS, 1, 1 }, { TW_NEXT, 2, 0 } }; X(plan_awake)(ego->cld, wakefulness); X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(%se-r2hc-%D%v%(%p%))", X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); } static int applicable0(const solver *ego_, const problem *p_) { const problem_rdft *p = (const problem_rdft *) p_; UNUSED(ego_); return (1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) ); } static int applicable(const solver *ego, const problem *p, const planner *plnr) { return (!NO_SLOWP(plnr) && applicable0(ego, p)); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { P *pln; const problem_rdft *p; plan *cld; R *buf; INT n; opcnt ops; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *)0; p = (const problem_rdft *) p_; n = p->sz->dims[0].n; buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), X(mktensor_0d)(), buf, buf, R2HC)); X(ifree)(buf); if (!cld) return (plan *)0; pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); pln->n = n; pln->is = p->sz->dims[0].is; pln->os = p->sz->dims[0].os; pln->cld = cld; pln->td = pln->td2 = 0; pln->kind = p->kind[0]; X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); X(ops_zero)(&ops); ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; ops.add = (n - 1) * 1 + (n-1)/2 * 6; ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); return &(pln->super.super); } /* constructor */ static solver *mksolver(void) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(reodft11e_r2hc_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }