/* * Copyright (c) 2005 Matteo Frigo * Copyright (c) 2005 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an R{E,O}DFT00 problem and an RDFT problem of half the length. This works by "logically" expanding the array to a real-even/odd DFT of length 2n-/+2 and then applying the split-radix algorithm. In this way, we can avoid having to pad to twice the length (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, but don't incur the accuracy loss that the "ordinary" algorithm sacrifices (ala redft00-r2hc.c). */ #include "reodft.h" typedef struct { solver super; } S; typedef struct { plan_rdft super; plan *clde, *cldo; twid *td; INT is, os; INT n; INT vl; INT ivs, ovs; } P; /* redft00 */ static void apply_e(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT is = ego->is, os = ego->os; INT i, j, n = ego->n + 1, n2 = (n-1)/2; INT iv, vl = ego->vl; INT ivs = ego->ivs, ovs = ego->ovs; R *W = ego->td->W - 2; R *buf; buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { /* do size (n-1)/2 r2hc transform of odd-indexed elements with stride 4, "wrapping around" end of array with even boundary conditions */ for (j = 0, i = 1; i < n; i += 4) buf[j++] = I[is * i]; for (i = 2*n-2-i; i > 0; i -= 4) buf[j++] = I[is * i]; { plan_rdft *cld = (plan_rdft *) ego->cldo; cld->apply((plan *) cld, buf, buf); } /* do size (n+1)/2 redft00 of the even-indexed elements, writing to O: */ { plan_rdft *cld = (plan_rdft *) ego->clde; cld->apply((plan *) cld, I, O); } /* combine the results with the twiddle factors to get output */ { /* DC element */ E b20 = O[0], b0 = K(2.0) * buf[0]; O[0] = b20 + b0; O[2*(n2*os)] = b20 - b0; /* O[n2*os] = O[n2*os]; */ } for (i = 1; i < n2 - i; ++i) { E ap, am, br, bi, wr, wi, wbr, wbi; br = buf[i]; bi = buf[n2 - i]; wr = W[2*i]; wi = W[2*i+1]; #if FFT_SIGN == -1 wbr = K(2.0) * (wr*br + wi*bi); wbi = K(2.0) * (wr*bi - wi*br); #else wbr = K(2.0) * (wr*br - wi*bi); wbi = K(2.0) * (wr*bi + wi*br); #endif ap = O[i*os]; O[i*os] = ap + wbr; O[(2*n2 - i)*os] = ap - wbr; am = O[(n2 - i)*os]; #if FFT_SIGN == -1 O[(n2 - i)*os] = am - wbi; O[(n2 + i)*os] = am + wbi; #else O[(n2 - i)*os] = am + wbi; O[(n2 + i)*os] = am - wbi; #endif } if (i == n2 - i) { /* Nyquist element */ E ap, wbr; wbr = K(2.0) * (W[2*i] * buf[i]); ap = O[i*os]; O[i*os] = ap + wbr; O[(2*n2 - i)*os] = ap - wbr; } } X(ifree)(buf); } /* rodft00 */ static void apply_o(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT is = ego->is, os = ego->os; INT i, j, n = ego->n - 1, n2 = (n+1)/2; INT iv, vl = ego->vl; INT ivs = ego->ivs, ovs = ego->ovs; R *W = ego->td->W - 2; R *buf; buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { /* do size (n+1)/2 r2hc transform of even-indexed elements with stride 4, "wrapping around" end of array with odd boundary conditions */ for (j = 0, i = 0; i < n; i += 4) buf[j++] = I[is * i]; for (i = 2*n-i; i > 0; i -= 4) buf[j++] = -I[is * i]; { plan_rdft *cld = (plan_rdft *) ego->cldo; cld->apply((plan *) cld, buf, buf); } /* do size (n-1)/2 rodft00 of the odd-indexed elements, writing to O: */ { plan_rdft *cld = (plan_rdft *) ego->clde; if (I == O) { /* can't use I+is and I, subplan would lose in-placeness */ cld->apply((plan *) cld, I + is, I + is); /* we could maybe avoid this copy by modifying the twiddle loop, but currently I can't be bothered. */ A(is >= os); for (i = 0; i < n2-1; ++i) O[os*i] = I[is*(i+1)]; } else cld->apply((plan *) cld, I + is, O); } /* combine the results with the twiddle factors to get output */ O[(n2-1)*os] = K(2.0) * buf[0]; for (i = 1; i < n2 - i; ++i) { E ap, am, br, bi, wr, wi, wbr, wbi; br = buf[i]; bi = buf[n2 - i]; wr = W[2*i]; wi = W[2*i+1]; #if FFT_SIGN == -1 wbr = K(2.0) * (wr*br + wi*bi); wbi = K(2.0) * (wi*br - wr*bi); #else wbr = K(2.0) * (wr*br - wi*bi); wbi = K(2.0) * (wr*bi + wi*br); #endif ap = O[(i-1)*os]; O[(i-1)*os] = wbi + ap; O[(2*n2-1 - i)*os] = wbi - ap; am = O[(n2-1 - i)*os]; #if FFT_SIGN == -1 O[(n2-1 - i)*os] = wbr + am; O[(n2-1 + i)*os] = wbr - am; #else O[(n2-1 - i)*os] = wbr + am; O[(n2-1 + i)*os] = wbr - am; #endif } if (i == n2 - i) { /* Nyquist element */ E ap, wbi; wbi = K(2.0) * (W[2*i+1] * buf[i]); ap = O[(i-1)*os]; O[(i-1)*os] = wbi + ap; O[(2*n2-1 - i)*os] = wbi - ap; } } X(ifree)(buf); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; static const tw_instr reodft00e_tw[] = { { TW_COS, 1, 1 }, { TW_SIN, 1, 1 }, { TW_NEXT, 1, 0 } }; X(plan_awake)(ego->clde, wakefulness); X(plan_awake)(ego->cldo, wakefulness); X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, 2*ego->n, 1, ego->n/4); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldo); X(plan_destroy_internal)(ego->clde); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; if (ego->super.apply == apply_e) p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", ego->n + 1, ego->vl, ego->clde, ego->cldo); else p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", ego->n - 1, ego->vl, ego->clde, ego->cldo); } static int applicable0(const solver *ego_, const problem *p_) { const problem_rdft *p = (const problem_rdft *) p_; UNUSED(ego_); return (1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ && (p->I != p->O || p->vecsz->rnk == 0 || p->vecsz->dims[0].is == p->vecsz->dims[0].os) && (p->kind[0] != RODFT00 || p->I != p->O || p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ ); } static int applicable(const solver *ego, const problem *p, const planner *plnr) { return (!NO_SLOWP(plnr) && applicable0(ego, p)); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { P *pln; const problem_rdft *p; plan *clde, *cldo; R *buf; INT n, n0; opcnt ops; int inplace_odd; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *)0; p = (const problem_rdft *) p_; n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); A(n > 0 && n % 2 == 0); buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, inplace_odd ? p->sz->dims[0].is : p->sz->dims[0].os), X(mktensor_0d)(), TAINT(p->I + p->sz->dims[0].is * (p->kind[0]==RODFT00), p->vecsz->rnk ? p->vecsz->dims[0].is : 0), TAINT(p->O + p->sz->dims[0].is * inplace_odd, p->vecsz->rnk ? p->vecsz->dims[0].os : 0), p->kind[0])); if (!clde) { X(ifree)(buf); return (plan *)0; } cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( X(mktensor_1d)(n/2, 1, 1), X(mktensor_0d)(), buf, buf, R2HC)); X(ifree)(buf); if (!cldo) return (plan *)0; pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); pln->n = n; pln->is = p->sz->dims[0].is; pln->os = p->sz->dims[0].os; pln->clde = clde; pln->cldo = cldo; pln->td = 0; X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); X(ops_zero)(&ops); ops.other = n/2; ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; /* tweak ops.other so that r2hc-pad is used for small sizes, which seems to be a lot faster on my machine: */ ops.other += 256; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); return &(pln->super.super); } /* constructor */ static solver *mksolver(void) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(reodft00e_splitradix_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }