/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "rdft.h" typedef struct { solver super; rdft_kind kind; } S; typedef struct { plan_rdft super; twid *td; INT n, is, os; rdft_kind kind; } P; /***************************************************************************/ static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1) { INT i; E rr = x[0], ri = 0; x += 1; for (i = 1; i + i < n; ++i) { rr += x[0] * w[0]; ri += x[1] * w[1]; x += 2; w += 2; } *or0 = rr; *oi1 = ri; } static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr) { INT i; E sr; o[0] = sr = xr[0]; o += 1; for (i = 1; i + i < n; ++i) { R a, b; a = xr[i * xs]; b = xr[(n - i) * xs]; sr += (o[0] = a + b); #if FFT_SIGN == -1 o[1] = b - a; #else o[1] = a - b; #endif o += 2; } *pr = sr; } static void apply_r2hc(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT i; INT n = ego->n, is = ego->is, os = ego->os; const R *W = ego->td->W; E *buf; size_t bufsz = n * sizeof(E); BUF_ALLOC(E *, buf, bufsz); hartley_r2hc(n, I, is, buf, O); for (i = 1; i + i < n; ++i) { cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os); W += n - 1; } BUF_FREE(buf, bufsz); } static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1) { INT i; E rr = x[0], ii = 0; x += 1; for (i = 1; i + i < n; ++i) { rr += x[0] * w[0]; ii += x[1] * w[1]; x += 2; w += 2; } #if FFT_SIGN == -1 *or0 = rr - ii; *or1 = rr + ii; #else *or0 = rr + ii; *or1 = rr - ii; #endif } static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr) { INT i; E sr; o[0] = sr = x[0]; o += 1; for (i = 1; i + i < n; ++i) { sr += (o[0] = x[i * xs] + x[i * xs]); o[1] = x[(n - i) * xs] + x[(n - i) * xs]; o += 2; } *pr = sr; } static void apply_hc2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT i; INT n = ego->n, is = ego->is, os = ego->os; const R *W = ego->td->W; E *buf; size_t bufsz = n * sizeof(E); BUF_ALLOC(E *, buf, bufsz); hartley_hc2r(n, I, is, buf, O); for (i = 1; i + i < n; ++i) { cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os); W += n - 1; } BUF_FREE(buf, bufsz); } /***************************************************************************/ static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; static const tw_instr half_tw[] = { { TW_HALF, 1, 0 }, { TW_NEXT, 1, 0 } }; X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, (ego->n - 1) / 2); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(rdft-generic-%s-%D)", ego->kind == R2HC ? "r2hc" : "hc2r", ego->n); } static int applicable(const S *ego, const problem *p_, const planner *plnr) { const problem_rdft *p = (const problem_rdft *) p_; return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && (p->sz->dims[0].n % 2) == 1 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) && X(is_prime)(p->sz->dims[0].n) && p->kind[0] == ego->kind ); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *)ego_; const problem_rdft *p; P *pln; INT n; static const plan_adt padt = { X(rdft_solve), awake, print, X(plan_null_destroy) }; if (!applicable(ego, p_, plnr)) return (plan *)0; p = (const problem_rdft *) p_; pln = MKPLAN_RDFT(P, &padt, R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r); pln->n = n = p->sz->dims[0].n; pln->is = p->sz->dims[0].is; pln->os = p->sz->dims[0].os; pln->td = 0; pln->kind = ego->kind; pln->super.super.ops.add = (n-1) * 2.5; pln->super.super.ops.mul = 0; pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ; #if 0 /* these are nice pipelined sequential loads and should cost nothing */ pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */ #endif return &(pln->super.super); } static solver *mksolver(rdft_kind kind) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->kind = kind; return &(slv->super); } void X(rdft_generic_register)(planner *p) { REGISTER_SOLVER(p, mksolver(R2HC)); REGISTER_SOLVER(p, mksolver(HC2R)); }