/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* direct RDFT solver, using r2c codelets */ #include "rdft.h" typedef struct { solver super; const kr2c_desc *desc; kr2c k; int bufferedp; } S; typedef struct { plan_rdft super; stride rs, csr, csi; stride brs, bcsr, bcsi; INT n, vl, rs0, ivs, ovs, ioffset, bioffset; kr2c k; const S *slv; } P; /************************************************************* Nonbuffered code *************************************************************/ static void apply_r2hc(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k(I, I + ego->rs0, O, O + ego->ioffset, ego->rs, ego->csr, ego->csi, ego->vl, ego->ivs, ego->ovs); } static void apply_hc2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k(O, O + ego->rs0, I, I + ego->ioffset, ego->rs, ego->csr, ego->csi, ego->vl, ego->ivs, ego->ovs); } /************************************************************* Buffered code *************************************************************/ /* should not be 2^k to avoid associativity conflicts */ static INT compute_batchsize(INT radix) { /* round up to multiple of 4 */ radix += 3; radix &= -4; return (radix + 2); } static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz) { X(cpy2d_ci)(I, buf, ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1), batchsz, ego->ivs, 1, 1); if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) { /* transform directly to output */ ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), O, O + ego->ioffset, ego->brs, ego->csr, ego->csi, batchsz, 1, ego->ovs); } else { /* transform to buffer and copy back */ ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), buf, buf + ego->bioffset, ego->brs, ego->bcsr, ego->bcsi, batchsz, 1, 1); X(cpy2d_co)(buf, O, ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1), batchsz, 1, ego->ovs, 1); } } static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz) { if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) { /* transform directly from input */ ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), I, I + ego->ioffset, ego->brs, ego->csr, ego->csi, batchsz, ego->ivs, 1); } else { /* copy into buffer and transform in place */ X(cpy2d_ci)(I, buf, ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1), batchsz, ego->ivs, 1, 1); ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), buf, buf + ego->bioffset, ego->brs, ego->bcsr, ego->bcsi, batchsz, 1, 1); } X(cpy2d_co)(buf, O, ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0, batchsz, 1, ego->ovs, 1); } static void iterate(const P *ego, R *I, R *O, void (*dobatch)(const P *ego, R *I, R *O, R *buf, INT batchsz)) { R *buf; INT vl = ego->vl; INT n = ego->n; INT i; INT batchsz = compute_batchsize(n); size_t bufsz = n * batchsz * sizeof(R); BUF_ALLOC(R *, buf, bufsz); for (i = 0; i < vl - batchsz; i += batchsz) { dobatch(ego, I, O, buf, batchsz); I += batchsz * ego->ivs; O += batchsz * ego->ovs; } dobatch(ego, I, O, buf, vl - i); BUF_FREE(buf, bufsz); } static void apply_buf_r2hc(const plan *ego_, R *I, R *O) { iterate((const P *) ego_, I, O, dobatch_r2hc); } static void apply_buf_hc2r(const plan *ego_, R *I, R *O) { iterate((const P *) ego_, I, O, dobatch_hc2r); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->rs); X(stride_destroy)(ego->csr); X(stride_destroy)(ego->csi); X(stride_destroy)(ego->brs); X(stride_destroy)(ego->bcsr); X(stride_destroy)(ego->bcsi); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; if (ego->slv->bufferedp) p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", X(rdft_kind_str)(s->desc->genus->kind), /* hack */ WS(ego->bcsr, 1), ego->n, ego->vl, s->desc->nam); else p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", X(rdft_kind_str)(s->desc->genus->kind), ego->n, ego->vl, s->desc->nam); } static INT ioffset(rdft_kind kind, INT sz, INT s) { return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); } static int applicable(const solver *ego_, const problem *p_) { const S *ego = (const S *) ego_; const kr2c_desc *desc = ego->desc; const problem_rdft *p = (const problem_rdft *) p_; INT vl, ivs, ovs; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == desc->n && p->kind[0] == desc->genus->kind /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && (0 /* can operate out-of-place */ || p->I != p->O /* computing one transform */ || vl == 1 /* can operate in-place as long as strides are the same */ || X(tensor_inplace_strides2)(p->sz, p->vecsz) ) ); } static int applicable_buf(const solver *ego_, const problem *p_) { const S *ego = (const S *) ego_; const kr2c_desc *desc = ego->desc; const problem_rdft *p = (const problem_rdft *) p_; INT vl, ivs, ovs, batchsz; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == desc->n && p->kind[0] == desc->genus->kind /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && (batchsz = compute_batchsize(desc->n), 1) && (0 /* can operate out-of-place */ || p->I != p->O /* can operate in-place as long as strides are the same */ || X(tensor_inplace_strides2)(p->sz, p->vecsz) /* can do it if the problem fits in the buffer, no matter what the strides are */ || vl <= batchsz ) ); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_rdft *p; iodim *d; INT rs, cs, b, n; static const plan_adt padt = { X(rdft_solve), X(null_awake), print, destroy }; UNUSED(plnr); if (ego->bufferedp) { if (!applicable_buf(ego_, p_)) return (plan *)0; } else { if (!applicable(ego_, p_)) return (plan *)0; } p = (const problem_rdft *) p_; if (R2HC_KINDP(p->kind[0])) { rs = p->sz->dims[0].is; cs = p->sz->dims[0].os; pln = MKPLAN_RDFT(P, &padt, ego->bufferedp ? apply_buf_r2hc : apply_r2hc); } else { rs = p->sz->dims[0].os; cs = p->sz->dims[0].is; pln = MKPLAN_RDFT(P, &padt, ego->bufferedp ? apply_buf_hc2r : apply_hc2r); } d = p->sz->dims; n = d[0].n; pln->k = ego->k; pln->n = n; pln->rs0 = rs; pln->rs = X(mkstride)(n, 2 * rs); pln->csr = X(mkstride)(n, cs); pln->csi = X(mkstride)(n, -cs); pln->ioffset = ioffset(p->kind[0], n, cs); b = compute_batchsize(n); pln->brs = X(mkstride)(n, 2 * b); pln->bcsr = X(mkstride)(n, b); pln->bcsi = X(mkstride)(n, -b); pln->bioffset = ioffset(p->kind[0], n, b); X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->slv = ego; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl / ego->desc->genus->vl, &ego->desc->ops, &pln->super.super.ops); if (ego->bufferedp) pln->super.super.ops.other += 2 * n * pln->vl; pln->super.super.could_prune_now_p = !ego->bufferedp; return &(pln->super.super); } /* constructor */ static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->k = k; slv->desc = desc; slv->bufferedp = bufferedp; return &(slv->super); } solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc) { return mksolver(k, desc, 0); } solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc) { return mksolver(k, desc, 1); }