/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "rdft.h" /* * Compute DHTs of prime sizes using Rader's trick: turn them * into convolutions of size n - 1, which we then perform via a pair * of FFTs. (We can then do prime real FFTs via rdft-dht.c.) * * Optionally (determined by the "pad" field of the solver), we can * perform the (cyclic) convolution by zero-padding to a size * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors. * */ typedef struct { solver super; int pad; } S; typedef struct { plan_rdft super; plan *cld1, *cld2; R *omega; INT n, npad, g, ginv; INT is, os; plan *cld_omega; } P; static rader_tl *omegas = 0; /***************************************************************************/ /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC. This requires a few more operations, but allows us to share the same plan/codelets for both Rader children. */ #define R2HC_ONLY_CONV 1 static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; INT n = ego->n; /* prime */ INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */ INT is = ego->is, os; INT k, gpower, g; R *buf, *omega; R r0; buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS); /* First, permute the input, storing in buf: */ g = ego->g; for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { buf[k] = I[gpower * is]; } /* gpower == g^(n-1) mod n == 1 */; A(n - 1 <= npad); for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */ buf[k] = 0; os = ego->os; /* compute RDFT of buf, storing in buf (i.e., in-place): */ { plan_rdft *cld = (plan_rdft *) ego->cld1; cld->apply((plan *) cld, buf, buf); } /* set output DC component: */ O[0] = (r0 = I[0]) + buf[0]; /* now, multiply by omega: */ omega = ego->omega; buf[0] *= omega[0]; for (k = 1; k < npad/2; ++k) { E rB, iB, rW, iW, a, b; rW = omega[k]; iW = omega[npad - k]; rB = buf[k]; iB = buf[npad - k]; a = rW * rB - iW * iB; b = rW * iB + iW * rB; #if R2HC_ONLY_CONV buf[k] = a + b; buf[npad - k] = a - b; #else buf[k] = a; buf[npad - k] = b; #endif } /* Nyquist component: */ A(k + k == npad); /* since npad is even */ buf[k] *= omega[k]; /* this will add input[0] to all of the outputs after the ifft */ buf[0] += r0; /* inverse FFT: */ { plan_rdft *cld = (plan_rdft *) ego->cld2; cld->apply((plan *) cld, buf, buf); } /* do inverse permutation to unshuffle the output: */ A(gpower == 1); #if R2HC_ONLY_CONV O[os] = buf[0]; gpower = g = ego->ginv; A(npad == n - 1 || npad/2 >= n - 1); if (npad == n - 1) { for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) { O[gpower * os] = buf[k] + buf[npad - k]; } O[gpower * os] = buf[k]; ++k, gpower = MULMOD(gpower, g, n); for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) { O[gpower * os] = buf[npad - k] - buf[k]; } } else { for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { O[gpower * os] = buf[k] + buf[npad - k]; } } #else g = ego->ginv; for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) { O[gpower * os] = buf[k]; } #endif A(gpower == 1); X(ifree)(buf); } static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT npad, INT ginv) { plan_rdft *p = (plan_rdft *) p_; R *omega; INT i, gpower; trigreal scale; triggen *t; if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas))) return omega; omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES); scale = npad; /* normalization for convolution */ t = X(mktriggen)(wakefulness, n); for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { trigreal w[2]; t->cexpl(t, gpower, w); omega[i] = (w[0] + w[1]) / scale; } X(triggen_destroy)(t); A(gpower == 1); A(npad == n - 1 || npad >= 2*(n - 1) - 1); for (; i < npad; ++i) omega[i] = K(0.0); if (npad > n - 1) for (i = 1; i < n-1; ++i) omega[npad - i] = omega[n - 1 - i]; p->apply(p_, omega, omega); X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas); return omega; } static void free_omega(R *omega) { X(rader_tl_delete)(omega, &omegas); } /***************************************************************************/ static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld1, wakefulness); X(plan_awake)(ego->cld2, wakefulness); X(plan_awake)(ego->cld_omega, wakefulness); switch (wakefulness) { case SLEEPY: free_omega(ego->omega); ego->omega = 0; break; default: ego->g = X(find_generator)(ego->n); ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n); A(MULMOD(ego->g, ego->ginv, ego->n) == 1); A(!ego->omega); ego->omega = mkomega(wakefulness, ego->cld_omega,ego->n,ego->npad,ego->ginv); break; } } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld_omega); X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)", ego->n, ego->npad, ego->is, ego->os, ego->cld1); if (ego->cld2 != ego->cld1) p->print(p, "%(%p%)", ego->cld2); if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) p->print(p, "%(%p%)", ego->cld_omega); p->putchr(p, ')'); } static int applicable(const solver *ego, const problem *p_, const planner *plnr) { const problem_rdft *p = (const problem_rdft *) p_; UNUSED(ego); return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && p->kind[0] == DHT && X(is_prime)(p->sz->dims[0].n) && p->sz->dims[0].n > 2 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW) /* proclaim the solver SLOW if p-1 is not easily factorizable. Unlike in the complex case where Bluestein can solve the problem, in the DHT case we may have no other choice */ && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1)) ); } static INT choose_transform_size(INT minsz) { static const INT primes[] = { 2, 3, 5, 0 }; while (!X(factors_into)(minsz, primes) || minsz % 2) ++minsz; return minsz; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_rdft *p = (const problem_rdft *) p_; P *pln; INT n, npad; INT is, os; plan *cld1 = (plan *) 0; plan *cld2 = (plan *) 0; plan *cld_omega = (plan *) 0; R *buf = (R *) 0; problem *cldp; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *) 0; n = p->sz->dims[0].n; is = p->sz->dims[0].is; os = p->sz->dims[0].os; if (ego->pad) npad = choose_transform_size(2 * (n - 1) - 1); else npad = n - 1; /* initial allocation for the purpose of planning */ buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS); cld1 = X(mkplan_f_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1), X(mktensor_1d)(1, 0, 0), buf, buf, R2HC), NO_SLOW, 0, 0); if (!cld1) goto nada; cldp = X(mkproblem_rdft_1_d)( X(mktensor_1d)(npad, 1, 1), X(mktensor_1d)(1, 0, 0), buf, buf, #if R2HC_ONLY_CONV R2HC #else HC2R #endif ); if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0))) goto nada; /* plan for omega */ cld_omega = X(mkplan_f_d)(plnr, X(mkproblem_rdft_1_d)( X(mktensor_1d)(npad, 1, 1), X(mktensor_1d)(1, 0, 0), buf, buf, R2HC), NO_SLOW, ESTIMATE, 0); if (!cld_omega) goto nada; /* deallocate buffers; let awake() or apply() allocate them for real */ X(ifree)(buf); buf = 0; pln = MKPLAN_RDFT(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->cld_omega = cld_omega; pln->omega = 0; pln->n = n; pln->npad = npad; pln->is = is; pln->os = os; X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad; pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad; pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad; #if R2HC_ONLY_CONV pln->super.super.ops.other += n-2 - ego->pad; pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad; #endif return &(pln->super.super); nada: X(ifree0)(buf); X(plan_destroy_internal)(cld_omega); X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); return 0; } /* constructors */ static solver *mksolver(int pad) { static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->pad = pad; return &(slv->super); } void X(dht_rader_register)(planner *p) { REGISTER_SOLVER(p, mksolver(0)); REGISTER_SOLVER(p, mksolver(1)); }