/* * Copyright (c) 2003, 2007-11 Matteo Frigo * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology * Copyright (c) 2012 Michael Pippig * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* plans for distributed out-of-place transpose using MPI_Alltoall, and which destroy the input array (also if TRANSPOSED_IN is used) */ #include "mpi-transpose.h" #include typedef struct { solver super; int copy_transposed_out; /* whether to copy the output for TRANSPOSED_OUT, which makes the first transpose out-of-place but costs an extra copy and requires us to destroy the input */ } S; typedef struct { plan_mpi_transpose super; plan *cld1, *cld2, *cld2rest, *cld3; MPI_Comm comm; int *send_block_sizes, *send_block_offsets; int *recv_block_sizes, *recv_block_offsets; INT rest_Ioff, rest_Ooff; int equal_blocks; } P; /* transpose locally to get contiguous chunks this may take two transposes if the block sizes are unequal (3 subplans, two of which operate on disjoint data) */ static void apply_pretranspose( const P *ego, R *I, R *O ) { plan_rdft *cld2, *cld2rest, *cld3; cld3 = (plan_rdft *) ego->cld3; if (cld3) cld3->apply(ego->cld3, O, O); /* else TRANSPOSED_IN is true and user wants I transposed */ cld2 = (plan_rdft *) ego->cld2; cld2->apply(ego->cld2, I, O); cld2rest = (plan_rdft *) ego->cld2rest; if (cld2rest) { cld2rest->apply(ego->cld2rest, I + ego->rest_Ioff, O + ego->rest_Ooff); } } static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld1 = (plan_rdft *) ego->cld1; if (cld1) { /* transpose locally to get contiguous chunks */ apply_pretranspose(ego, I, O); /* transpose chunks globally */ if (ego->equal_blocks) MPI_Alltoall(O, ego->send_block_sizes[0], FFTW_MPI_TYPE, I, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ego->comm); else MPI_Alltoallv(O, ego->send_block_sizes, ego->send_block_offsets, FFTW_MPI_TYPE, I, ego->recv_block_sizes, ego->recv_block_offsets, FFTW_MPI_TYPE, ego->comm); /* transpose locally to get non-transposed output */ cld1->apply(ego->cld1, I, O); } /* else TRANSPOSED_OUT is true and user wants O transposed */ else { /* transpose locally to get contiguous chunks */ apply_pretranspose(ego, I, I); /* transpose chunks globally */ if (ego->equal_blocks) MPI_Alltoall(I, ego->send_block_sizes[0], FFTW_MPI_TYPE, O, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ego->comm); else MPI_Alltoallv(I, ego->send_block_sizes, ego->send_block_offsets, FFTW_MPI_TYPE, O, ego->recv_block_sizes, ego->recv_block_offsets, FFTW_MPI_TYPE, ego->comm); } } static int applicable(const S *ego, const problem *p_, const planner *plnr) { /* in contrast to transpose-alltoall this algorithm can not preserve the input, * since we need at least one transpose before the (out-of-place) Alltoall */ const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; return (1 && p->I != p->O && (!NO_DESTROY_INPUTP(plnr)) && ((p->flags & TRANSPOSED_OUT) || !ego->copy_transposed_out) && ONLY_TRANSPOSEDP(p->flags) ); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld1, wakefulness); X(plan_awake)(ego->cld2, wakefulness); X(plan_awake)(ego->cld2rest, wakefulness); X(plan_awake)(ego->cld3, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(ifree0)(ego->send_block_sizes); MPI_Comm_free(&ego->comm); X(plan_destroy_internal)(ego->cld3); X(plan_destroy_internal)(ego->cld2rest); X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(mpi-transpose-alltoall-transposed%s%(%p%)%(%p%)%(%p%)%(%p%))", ego->equal_blocks ? "/e" : "", ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_mpi_transpose *p; P *pln; plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; INT b, bt, vn, rest_Ioff, rest_Ooff; R *O; int *sbs, *sbo, *rbs, *rbo; int pe, my_pe, n_pes; int equal_blocks = 1; static const plan_adt padt = { XM(transpose_solve), awake, print, destroy }; if (!applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_mpi_transpose *) p_; vn = p->vn; MPI_Comm_rank(p->comm, &my_pe); MPI_Comm_size(p->comm, &n_pes); bt = XM(block)(p->ny, p->tblock, my_pe); if (p->flags & TRANSPOSED_OUT) { /* O stays transposed */ if (ego->copy_transposed_out) { cld1 = X(mkplan_f_d)(plnr, X(mkproblem_rdft_0_d)(X(mktensor_1d) (bt * p->nx * vn, 1, 1), p->I, O = p->O), 0, 0, NO_SLOW); if (XM(any_true)(!cld1, p->comm)) goto nada; } else /* first transpose is in-place */ O = p->I; } else { /* transpose nx x bt x vn -> bt x nx x vn */ cld1 = X(mkplan_f_d)(plnr, X(mkproblem_rdft_0_d)(X(mktensor_3d) (bt, vn, p->nx * vn, p->nx, bt * vn, vn, vn, 1, 1), p->I, O = p->O), 0, 0, NO_SLOW); if (XM(any_true)(!cld1, p->comm)) goto nada; } if (XM(any_true)(!XM(mkplans_pretranspose)(p, plnr, p->I, O, my_pe, &cld2, &cld2rest, &cld3, &rest_Ioff, &rest_Ooff), p->comm)) goto nada; pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->cld2rest = cld2rest; pln->rest_Ioff = rest_Ioff; pln->rest_Ooff = rest_Ooff; pln->cld3 = cld3; MPI_Comm_dup(p->comm, &pln->comm); /* Compute sizes/offsets of blocks to send for all-to-all command. */ sbs = (int *) MALLOC(4 * n_pes * sizeof(int), PLANS); sbo = sbs + n_pes; rbs = sbo + n_pes; rbo = rbs + n_pes; b = XM(block)(p->nx, p->block, my_pe); bt = XM(block)(p->ny, p->tblock, my_pe); for (pe = 0; pe < n_pes; ++pe) { INT db, dbt; /* destination block sizes */ db = XM(block)(p->nx, p->block, pe); dbt = XM(block)(p->ny, p->tblock, pe); if (db != p->block || dbt != p->tblock) equal_blocks = 0; /* MPI requires type "int" here; apparently it has no 64-bit API? Grrr. */ sbs[pe] = (int) (b * dbt * vn); sbo[pe] = (int) (pe * (b * p->tblock) * vn); rbs[pe] = (int) (db * bt * vn); rbo[pe] = (int) (pe * (p->block * bt) * vn); } pln->send_block_sizes = sbs; pln->send_block_offsets = sbo; pln->recv_block_sizes = rbs; pln->recv_block_offsets = rbo; pln->equal_blocks = equal_blocks; X(ops_zero)(&pln->super.super.ops); if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); /* FIXME: should MPI operations be counted in "other" somehow? */ return &(pln->super.super); nada: X(plan_destroy_internal)(cld3); X(plan_destroy_internal)(cld2rest); X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); return (plan *) 0; } static solver *mksolver(int copy_transposed_out) { static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->copy_transposed_out = copy_transposed_out; return &(slv->super); } void XM(transpose_alltoall_transposed_register)(planner *p) { int cto; for (cto = 0; cto <= 1; ++cto) REGISTER_SOLVER(p, mksolver(cto)); }