/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* Complex DFTs of rank >= 2, for the case where we are distributed across the first dimension only, and the output is not transposed. */ #include "mpi-dft.h" #include "dft.h" typedef struct { solver super; int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ } S; typedef struct { plan_mpi_dft super; plan *cld1, *cld2; INT roff, ioff; int preserve_input; } P; static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_dft *cld1; plan_rdft *cld2; INT roff = ego->roff, ioff = ego->ioff; /* DFT local dimensions */ cld1 = (plan_dft *) ego->cld1; if (ego->preserve_input) { cld1->apply(ego->cld1, I+roff, I+ioff, O+roff, O+ioff); I = O; } else cld1->apply(ego->cld1, I+roff, I+ioff, I+roff, I+ioff); /* DFT non-local dimension (via dft-rank1-bigvec, usually): */ cld2 = (plan_rdft *) ego->cld2; cld2->apply(ego->cld2, I, O); } static int applicable(const S *ego, const problem *p_, const planner *plnr) { const problem_mpi_dft *p = (const problem_mpi_dft *) p_; return (1 && p->sz->rnk > 1 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */ && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) && p->I != p->O)) && XM(is_local_after)(1, p->sz, IB) && XM(is_local_after)(1, p->sz, OB) && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ || !XM(dft_serial_applicable)(p)) ); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cld1, wakefulness); X(plan_awake)(ego->cld2, wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(mpi-dft-rank-geq2%s%(%p%)%(%p%))", ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_mpi_dft *p; P *pln; plan *cld1 = 0, *cld2 = 0; R *ri, *ii, *ro, *io, *I, *O; tensor *sz; dtensor *sz2; int i, my_pe, n_pes; INT nrest; static const plan_adt padt = { XM(dft_solve), awake, print, destroy }; UNUSED(ego); if (!applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_mpi_dft *) p_; X(extract_reim)(p->sign, I = p->I, &ri, &ii); X(extract_reim)(p->sign, O = p->O, &ro, &io); if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; else { ro = ri; io = ii; } MPI_Comm_rank(p->comm, &my_pe); MPI_Comm_size(p->comm, &n_pes); sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ i = p->sz->rnk - 2; A(i >= 0); sz->dims[i].n = p->sz->dims[i+1].n; sz->dims[i].is = sz->dims[i].os = 2 * p->vn; for (--i; i >= 0; --i) { sz->dims[i].n = p->sz->dims[i+1].n; sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; } nrest = X(tensor_sz)(sz); { INT is = sz->dims[0].n * sz->dims[0].is; INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe); cld1 = X(mkplan_d)(plnr, X(mkproblem_dft_d)(sz, X(mktensor_2d)(b, is, is, p->vn, 2, 2), ri, ii, ro, io)); if (XM(any_true)(!cld1, p->comm)) goto nada; } sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */ sz2->dims[0] = p->sz->dims[0]; cld2 = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz2, nrest * p->vn, I, O, p->comm, p->sign, RANK1_BIGVEC_ONLY)); if (XM(any_true)(!cld2, p->comm)) goto nada; pln = MKPLAN_MPI_DFT(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); pln->roff = ri - p->I; pln->ioff = ii - p->I; X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); return &(pln->super.super); nada: X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); return (plan *) 0; } static solver *mksolver(int preserve_input) { static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->preserve_input = preserve_input; return &(slv->super); } void XM(dft_rank_geq2_register)(planner *p) { int preserve_input; for (preserve_input = 0; preserve_input <= 1; ++preserve_input) REGISTER_SOLVER(p, mksolver(preserve_input)); }