/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "verify.h" /* copy real A into real B, using output stride of A and input stride of B */ typedef struct { dotens2_closure k; R *ra; R *rb; } cpyr_closure; static void cpyr0(dotens2_closure *k_, int indxa, int ondxa, int indxb, int ondxb) { cpyr_closure *k = (cpyr_closure *)k_; k->rb[indxb] = k->ra[ondxa]; UNUSED(indxa); UNUSED(ondxb); } static void cpyr(R *ra, const bench_tensor *sza, R *rb, const bench_tensor *szb) { cpyr_closure k; k.k.apply = cpyr0; k.ra = ra; k.rb = rb; bench_dotens2(sza, szb, &k.k); } /* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride of A and input stride of B. Only copies non-redundant half; other half must be copied via mkhermitian. */ typedef struct { dotens2_closure k; int n; int as; int scalea; R *ra, *ia; R *rb, *ib; } cpyhc2_closure; static void cpyhc20(dotens2_closure *k_, int indxa, int ondxa, int indxb, int ondxb) { cpyhc2_closure *k = (cpyhc2_closure *)k_; int i, n = k->n; int scalea = k->scalea; int as = k->as * scalea; R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea; R *rb = k->rb + indxb, *ib = k->ib + indxb; UNUSED(indxa); UNUSED(ondxb); for (i = 0; i < n/2 + 1; ++i) { rb[2*i] = ra[as*i]; ib[2*i] = ia[as*i]; } } static void cpyhc2(R *ra, R *ia, const bench_tensor *sza, const bench_tensor *vecsza, int scalea, R *rb, R *ib, const bench_tensor *szb) { cpyhc2_closure k; BENCH_ASSERT(sza->rnk <= 1); k.k.apply = cpyhc20; k.n = tensor_sz(sza); k.scalea = scalea; if (!FINITE_RNK(sza->rnk) || sza->rnk == 0) k.as = 0; else k.as = sza->dims[0].os; k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; bench_dotens2(vecsza, szb, &k.k); } /* icpyhc2 is the inverse of cpyhc2 */ static void icpyhc20(dotens2_closure *k_, int indxa, int ondxa, int indxb, int ondxb) { cpyhc2_closure *k = (cpyhc2_closure *)k_; int i, n = k->n; int scalea = k->scalea; int as = k->as * scalea; R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea; R *rb = k->rb + ondxb, *ib = k->ib + ondxb; UNUSED(ondxa); UNUSED(indxb); for (i = 0; i < n/2 + 1; ++i) { ra[as*i] = rb[2*i]; ia[as*i] = ib[2*i]; } } static void icpyhc2(R *ra, R *ia, const bench_tensor *sza, const bench_tensor *vecsza, int scalea, R *rb, R *ib, const bench_tensor *szb) { cpyhc2_closure k; BENCH_ASSERT(sza->rnk <= 1); k.k.apply = icpyhc20; k.n = tensor_sz(sza); k.scalea = scalea; if (!FINITE_RNK(sza->rnk) || sza->rnk == 0) k.as = 0; else k.as = sza->dims[0].is; k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; bench_dotens2(vecsza, szb, &k.k); } typedef struct { dofft_closure k; bench_problem *p; } dofft_rdft2_closure; static void rdft2_apply(dofft_closure *k_, bench_complex *in, bench_complex *out) { dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_; bench_problem *p = k->p; bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap; bench_tensor *probsz2, *totalsz2, *pckdsz2; bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap; bench_real *ri, *ii, *ro, *io; int n2, totalscale; totalsz = tensor_append(p->vecsz, p->sz); pckdsz = verify_pack(totalsz, 2); n2 = tensor_sz(totalsz); if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0) n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * (p->sz->dims[p->sz->rnk - 1].n / 2 + 1); ri = (bench_real *) p->in; ro = (bench_real *) p->out; if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) { probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1); totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1); pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1); } else { probsz2 = mktensor(0); totalsz2 = tensor_copy(totalsz); pckdsz2 = tensor_copy(pckdsz); } totalsz_swap = tensor_copy_swapio(totalsz); pckdsz_swap = tensor_copy_swapio(pckdsz); totalsz2_swap = tensor_copy_swapio(totalsz2); pckdsz2_swap = tensor_copy_swapio(pckdsz2); probsz2_swap = tensor_copy_swapio(probsz2); /* confusion: the stride is the distance between complex elements when using interleaved format, but it is the distance between real elements when using split format */ if (p->split) { ii = p->ini ? (bench_real *) p->ini : ri + n2; io = p->outi ? (bench_real *) p->outi : ro + n2; totalscale = 1; } else { ii = p->ini ? (bench_real *) p->ini : ri + 1; io = p->outi ? (bench_real *) p->outi : ro + 1; totalscale = 2; } if (p->sign < 0) { /* R2HC */ int N, vN, i; cpyr(&c_re(in[0]), pckdsz, ri, totalsz); after_problem_rcopy_from(p, ri); doit(1, p); after_problem_hccopy_to(p, ro, io); if (k->k.recopy_input) cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap); cpyhc2(ro, io, probsz2, totalsz2, totalscale, &c_re(out[0]), &c_im(out[0]), pckdsz2); N = tensor_sz(p->sz); vN = tensor_sz(p->vecsz); for (i = 0; i < vN; ++i) mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1); } else { /* HC2R */ icpyhc2(ri, ii, probsz2, totalsz2, totalscale, &c_re(in[0]), &c_im(in[0]), pckdsz2); after_problem_hccopy_from(p, ri, ii); doit(1, p); after_problem_rcopy_to(p, ro); if (k->k.recopy_input) cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale, &c_re(in[0]), &c_im(in[0]), pckdsz2_swap); mkreal(out, tensor_sz(pckdsz)); cpyr(ro, totalsz, &c_re(out[0]), pckdsz); } tensor_destroy(totalsz); tensor_destroy(pckdsz); tensor_destroy(totalsz_swap); tensor_destroy(pckdsz_swap); tensor_destroy(probsz2); tensor_destroy(totalsz2); tensor_destroy(pckdsz2); tensor_destroy(probsz2_swap); tensor_destroy(totalsz2_swap); tensor_destroy(pckdsz2_swap); } void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e) { C *inA, *inB, *inC, *outA, *outB, *outC, *tmp; int n, vecn, N; dofft_rdft2_closure k; BENCH_ASSERT(p->kind == PROBLEM_REAL); if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk)) return; /* give up */ k.k.apply = rdft2_apply; k.k.recopy_input = 0; k.p = p; if (rounds == 0) rounds = 20; /* default value */ n = tensor_sz(p->sz); vecn = tensor_sz(p->vecsz); N = n * vecn; inA = (C *) bench_malloc(N * sizeof(C)); inB = (C *) bench_malloc(N * sizeof(C)); inC = (C *) bench_malloc(N * sizeof(C)); outA = (C *) bench_malloc(N * sizeof(C)); outB = (C *) bench_malloc(N * sizeof(C)); outC = (C *) bench_malloc(N * sizeof(C)); tmp = (C *) bench_malloc(N * sizeof(C)); e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, tmp, rounds, tol); e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC, tmp, rounds, tol); e->s = 0.0; if (p->sign < 0) e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, inA, inB, outA, outB, tmp, rounds, tol, TIME_SHIFT)); else e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, inA, inB, outA, outB, tmp, rounds, tol, FREQ_SHIFT)); if (!p->in_place && !p->destroy_input) preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1, N, inA, inB, outB, rounds); bench_free(tmp); bench_free(outC); bench_free(outB); bench_free(outA); bench_free(inC); bench_free(inB); bench_free(inA); } void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds, double t[6]) { dofft_rdft2_closure k; int n; C *a, *b; BENCH_ASSERT(p->kind == PROBLEM_REAL); BENCH_ASSERT(p->sz->rnk == 1); BENCH_ASSERT(p->vecsz->rnk == 0); k.k.apply = rdft2_apply; k.k.recopy_input = 0; k.p = p; n = tensor_sz(p->sz); a = (C *) bench_malloc(n * sizeof(C)); b = (C *) bench_malloc(n * sizeof(C)); accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, n, a, b, rounds, impulse_rounds, t); bench_free(b); bench_free(a); }