/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include "ifftw.h" static int signof(INT x) { if (x < 0) return -1; if (x == 0) return 0; /* if (x > 0) */ return 1; } /* total order among iodim's */ int X(dimcmp)(const iodim *a, const iodim *b) { INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os); INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo); /* in descending order of min{istride, ostride} */ if (sam != sbm) return signof(sbm - sam); /* in case of a tie, in descending order of istride */ if (sbi != sai) return signof(sbi - sai); /* in case of a tie, in descending order of ostride */ if (sbo != sao) return signof(sbo - sao); /* in case of a tie, in ascending order of n */ return signof(a->n - b->n); } static void canonicalize(tensor *x) { if (x->rnk > 1) { qsort(x->dims, (size_t)x->rnk, sizeof(iodim), (int (*)(const void *, const void *))X(dimcmp)); } } static int compare_by_istride(const iodim *a, const iodim *b) { INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); /* in descending order of istride */ return signof(sbi - sai); } static tensor *really_compress(const tensor *sz) { int i, rnk; tensor *x; A(FINITE_RNK(sz->rnk)); for (i = rnk = 0; i < sz->rnk; ++i) { A(sz->dims[i].n > 0); if (sz->dims[i].n != 1) ++rnk; } x = X(mktensor)(rnk); for (i = rnk = 0; i < sz->rnk; ++i) { if (sz->dims[i].n != 1) x->dims[rnk++] = sz->dims[i]; } return x; } /* Like tensor_copy, but eliminate n == 1 dimensions, which never affect any transform or transform vector. Also, we sort the tensor into a canonical order of decreasing strides (see X(dimcmp) for an exact definition). In general, processing a loop/array in order of decreasing stride will improve locality. Both forward and backwards traversal of the tensor are considered e.g. by vrank-geq1, so sorting in increasing vs. decreasing order is not really important. */ tensor *X(tensor_compress)(const tensor *sz) { tensor *x = really_compress(sz); canonicalize(x); return x; } /* Return whether the strides of a and b are such that they form an effective contiguous 1d array. Assumes that a.is >= b.is. */ static int strides_contig(iodim *a, iodim *b) { return (a->is == b->is * b->n && a->os == b->os * b->n); } /* Like tensor_compress, but also compress into one dimension any group of dimensions that form a contiguous block of indices with some stride. (This can safely be done for transform vector sizes.) */ tensor *X(tensor_compress_contiguous)(const tensor *sz) { int i, rnk; tensor *sz2, *x; if (X(tensor_sz)(sz) == 0) return X(mktensor)(RNK_MINFTY); sz2 = really_compress(sz); A(FINITE_RNK(sz2->rnk)); if (sz2->rnk <= 1) { /* nothing to compress. */ if (0) { /* this call is redundant, because "sz->rnk <= 1" implies that the tensor is already canonical, but I am writing it explicitly because "logically" we need to canonicalize the tensor before returning. */ canonicalize(sz2); } return sz2; } /* sort in descending order of |istride|, so that compressible dimensions appear contigously */ qsort(sz2->dims, (size_t)sz2->rnk, sizeof(iodim), (int (*)(const void *, const void *))compare_by_istride); /* compute what the rank will be after compression */ for (i = rnk = 1; i < sz2->rnk; ++i) if (!strides_contig(sz2->dims + i - 1, sz2->dims + i)) ++rnk; /* merge adjacent dimensions whenever possible */ x = X(mktensor)(rnk); x->dims[0] = sz2->dims[0]; for (i = rnk = 1; i < sz2->rnk; ++i) { if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) { x->dims[rnk - 1].n *= sz2->dims[i].n; x->dims[rnk - 1].is = sz2->dims[i].is; x->dims[rnk - 1].os = sz2->dims[i].os; } else { A(rnk < x->rnk); x->dims[rnk++] = sz2->dims[i]; } } X(tensor_destroy)(sz2); /* reduce to canonical form */ canonicalize(x); return x; } /* The inverse of X(tensor_append): splits the sz tensor into tensor a followed by tensor b, where a's rank is arnk. */ void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b) { A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk)); *a = X(tensor_copy_sub)(sz, 0, arnk); *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk); } /* TRUE if the two tensors are equal */ int X(tensor_equal)(const tensor *a, const tensor *b) { if (a->rnk != b->rnk) return 0; if (FINITE_RNK(a->rnk)) { int i; for (i = 0; i < a->rnk; ++i) if (0 || a->dims[i].n != b->dims[i].n || a->dims[i].is != b->dims[i].is || a->dims[i].os != b->dims[i].os ) return 0; } return 1; } /* TRUE if the sets of input and output locations described by (append sz vecsz) are the same */ int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz) { tensor *t = X(tensor_append)(sz, vecsz); tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS); tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS); tensor *tic = X(tensor_compress_contiguous)(ti); tensor *toc = X(tensor_compress_contiguous)(to); int retval = X(tensor_equal)(tic, toc); X(tensor_destroy)(t); X(tensor_destroy4)(ti, to, tic, toc); return retval; }