/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* solvers/plans for vectors of DFTs corresponding to the columns of a matrix: first transpose the matrix so that the DFTs are contiguous, then do DFTs with transposed output. In particular, we restrict ourselves to the case of a square transpose (or a sequence thereof). */ #include "dft.h" typedef solver S; typedef struct { plan_dft super; INT vl, ivs, ovs; plan *cldtrans, *cld, *cldrest; } P; /* initial transpose is out-of-place from input to output */ static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i; for (i = 0; i < vl; ++i) { { plan_dft *cldtrans = (plan_dft *) ego->cldtrans; cldtrans->apply(ego->cldtrans, ri, ii, ro, io); } { plan_dft *cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ro, io, ro, io); } ri += ivs; ii += ivs; ro += ovs; io += ovs; } { plan_dft *cldrest = (plan_dft *) ego->cldrest; cldrest->apply(ego->cldrest, ri, ii, ro, io); } } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cldrest); X(plan_destroy_internal)(ego->cld); X(plan_destroy_internal)(ego->cldtrans); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cldtrans, wakefulness); X(plan_awake)(ego->cld, wakefulness); X(plan_awake)(ego->cldrest, wakefulness); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))", ego->vl, ego->cldtrans, ego->cld, ego->cldrest); } static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1) { int dim0, dim1; *pdim0 = *pdim1 = -1; for (dim0 = 0; dim0 < vs->rnk; ++dim0) for (dim1 = 0; dim1 < s->rnk; ++dim1) if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is) && vs->dims[dim0].n >= s->dims[dim1].n && (*pdim0 == -1 || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is) && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) { *pdim0 = dim0; *pdim1 = dim1; } return (*pdim0 != -1 && *pdim1 != -1); } static int applicable0(const solver *ego_, const problem *p_, const planner *plnr, int *pdim0, int *pdim1) { const problem_dft *p = (const problem_dft *) p_; UNUSED(ego_); UNUSED(plnr); return (1 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk) /* FIXME: can/should we relax this constraint? */ && X(tensor_inplace_strides2)(p->vecsz, p->sz) && pickdim(p->vecsz, p->sz, pdim0, pdim1) /* output should not *already* include the transpose (in which case we duplicate the regular indirect.c) */ && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is) ); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *pdim0, int *pdim1) { if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0; { const problem_dft *p = (const problem_dft *) p_; INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1; /* UGLY if does not result in contiguous transforms or transforms of contiguous vectors (since the latter at least have efficient transpositions) */ if (NO_UGLYP(plnr) && p->vecsz->dims[*pdim0].is != u && !(p->vecsz->rnk == 2 && p->vecsz->dims[1-*pdim0].is == u && p->vecsz->dims[*pdim0].is == u * p->vecsz->dims[1-*pdim0].n)) return 0; if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const problem_dft *p = (const problem_dft *) p_; P *pln; plan *cld = 0, *cldtrans = 0, *cldrest = 0; int pdim0, pdim1; tensor *ts, *tv; INT vl, ivs, ovs; R *rit, *iit, *rot, *iot; static const plan_adt padt = { X(dft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr, &pdim0, &pdim1)) return (plan *) 0; vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n; A(vl >= 1); ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is; ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os; rit = TAINT(p->ri, vl == 1 ? 0 : ivs); iit = TAINT(p->ii, vl == 1 ? 0 : ivs); rot = TAINT(p->ro, vl == 1 ? 0 : ovs); iot = TAINT(p->io, vl == 1 ? 0 : ovs); ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS); ts->dims[pdim1].os = p->vecsz->dims[pdim0].is; tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS); tv->dims[pdim0].os = p->sz->dims[pdim1].is; tv->dims[pdim0].n = p->sz->dims[pdim1].n; cldtrans = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_0d)(), X(tensor_append)(tv, ts), rit, iit, rot, iot)); X(tensor_destroy2)(ts, tv); if (!cldtrans) goto nada; ts = X(tensor_copy)(p->sz); ts->dims[pdim1].is = p->vecsz->dims[pdim0].is; tv = X(tensor_copy)(p->vecsz); tv->dims[pdim0].is = p->sz->dims[pdim1].is; tv->dims[pdim0].n = p->sz->dims[pdim1].n; cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv, rot, iot, rot, iot)); if (!cld) goto nada; tv = X(tensor_copy)(p->vecsz); tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n; cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv, p->ri + ivs * vl, p->ii + ivs * vl, p->ro + ovs * vl, p->io + ovs * vl)); if (!cldrest) goto nada; pln = MKPLAN_DFT(P, &padt, apply_op); pln->cldtrans = cldtrans; pln->cld = cld; pln->cldrest = cldrest; pln->vl = vl; pln->ivs = ivs; pln->ovs = ovs; X(ops_cpy)(&cldrest->ops, &pln->super.super.ops); X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops); X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops); return &(pln->super.super); nada: X(plan_destroy_internal)(cldrest); X(plan_destroy_internal)(cld); X(plan_destroy_internal)(cldtrans); return (plan *)0; } static solver *mksolver(void) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); return slv; } void X(dft_indirect_transpose_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }