/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* direct DFT solver, if we have a codelet */ #include "dft.h" typedef struct { solver super; const kdft_desc *desc; kdft k; int bufferedp; } S; typedef struct { plan_dft super; stride is, os, bufstride; INT n, vl, ivs, ovs; kdft k; const S *slv; } P; static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, R *buf, INT batchsz) { X(cpy2d_pair_ci)(ri, ii, buf, buf+1, ego->n, WS(ego->is, 1), WS(ego->bufstride, 1), batchsz, ego->ivs, 2); if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) { /* transform directly to output */ ego->k(buf, buf+1, ro, io, ego->bufstride, ego->os, batchsz, 2, ego->ovs); } else { /* transform to buffer and copy back */ ego->k(buf, buf+1, buf, buf+1, ego->bufstride, ego->bufstride, batchsz, 2, 2); X(cpy2d_pair_co)(buf, buf+1, ro, io, ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), batchsz, 2, ego->ovs); } } static INT compute_batchsize(INT n) { /* round up to multiple of 4 */ n += 3; n &= -4; return (n + 2); } static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; R *buf; INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n); INT i; size_t bufsz = n * batchsz * 2 * sizeof(R); BUF_ALLOC(R *, buf, bufsz); for (i = 0; i < vl - batchsz; i += batchsz) { dobatch(ego, ri, ii, ro, io, buf, batchsz); ri += batchsz * ego->ivs; ii += batchsz * ego->ivs; ro += batchsz * ego->ovs; io += batchsz * ego->ovs; } dobatch(ego, ri, ii, ro, io, buf, vl - i); BUF_FREE(buf, bufsz); } static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs); } static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; INT vl = ego->vl; ASSERT_ALIGNED_DOUBLE; /* for 4-way SIMD when VL is odd: iterate over an even vector length VL, and then execute the last iteration as a 2-vector with vector stride 0. */ ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs); ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs, ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs, ego->is, ego->os, 1, 0, 0); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->is); X(stride_destroy)(ego->os); X(stride_destroy)(ego->bufstride); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; const kdft_desc *d = s->desc; if (ego->slv->bufferedp) p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", compute_batchsize(d->sz), d->sz, ego->vl, d->nam); else p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam); } static int applicable_buf(const solver *ego_, const problem *p_, const planner *plnr) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; const kdft_desc *d = ego->desc; INT vl; INT ivs, ovs; INT batchsz; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk == 1 && p->sz->dims[0].n == d->sz /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) /* UGLY if IS <= IVS */ && !(NO_UGLYP(plnr) && X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs)) && (batchsz = compute_batchsize(d->sz), 1) && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, 2 * batchsz, p->sz->dims[0].os, batchsz, 2, ovs, plnr)) && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, 2 * batchsz, p->sz->dims[0].os, vl % batchsz, 2, ovs, plnr)) && (0 /* can operate out-of-place */ || p->ri != p->ro /* can operate in-place as long as strides are the same */ || X(tensor_inplace_strides2)(p->sz, p->vecsz) /* can do it if the problem fits in the buffer, no matter what the strides are */ || vl <= batchsz ) ); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *extra_iterp) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; const kdft_desc *d = ego->desc; INT vl; INT ivs, ovs; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == d->sz /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && ((*extra_iterp = 0, (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, p->sz->dims[0].is, p->sz->dims[0].os, vl, ivs, ovs, plnr))) || (*extra_iterp = 1, ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io, p->sz->dims[0].is, p->sz->dims[0].os, vl - 1, ivs, ovs, plnr)) && (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, p->sz->dims[0].is, p->sz->dims[0].os, 2, 0, 0, plnr))))) && (0 /* can operate out-of-place */ || p->ri != p->ro /* can always compute one transform */ || vl == 1 /* can operate in-place as long as strides are the same */ || X(tensor_inplace_strides2)(p->sz, p->vecsz) ) ); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_dft *p; iodim *d; const kdft_desc *e = ego->desc; static const plan_adt padt = { X(dft_solve), X(null_awake), print, destroy }; UNUSED(plnr); if (ego->bufferedp) { if (!applicable_buf(ego_, p_, plnr)) return (plan *)0; pln = MKPLAN_DFT(P, &padt, apply_buf); } else { int extra_iterp = 0; if (!applicable(ego_, p_, plnr, &extra_iterp)) return (plan *)0; pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply); } p = (const problem_dft *) p_; d = p->sz->dims; pln->k = ego->k; pln->n = d[0].n; pln->is = X(mkstride)(pln->n, d[0].is); pln->os = X(mkstride)(pln->n, d[0].os); pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n)); X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->slv = ego; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops); if (ego->bufferedp) pln->super.super.ops.other += 4 * pln->n * pln->vl; pln->super.super.could_prune_now_p = !ego->bufferedp; return &(pln->super.super); } static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp) { static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; S *slv = MKSOLVER(S, &sadt); slv->k = k; slv->desc = desc; slv->bufferedp = bufferedp; return &(slv->super); } solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc) { return mksolver(k, desc, 0); } solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc) { return mksolver(k, desc, 1); }